Your browser doesn't support javascript.
Шоу: 20 | 50 | 100
Результаты 1 - 20 de 38
Фильтр
1.
Handbook of Oxidative Stress in Cancer: Therapeutic Aspects: Volume 1 ; 1:1787-1809, 2022.
Статья в английский | Scopus | ID: covidwho-20235524

Реферат

Breast cancer is the most commonly diagnosed cancer globally and is among the leading causes of cancer deaths worldwide. Breast cancer mortality rates are increasing due to delays in diagnosis, prognosis, and treatment caused by the coronavirus disease 2019 (COVID-19) pandemic. Identification and validation of blood-based breast cancer biomarkers for early detection is a top priority worldwide. MicroRNAs (miRNAs) show the potential to serve as breast cancer biomarkers. miRNAs are small, endogenously produced RNAs that regulate growth and development. However, oncogenic miRNAs also play a major role in tumor growth and can alter the tumor microenvironment (TME) in favor of cancer metastasis. The TME represents a complex network of diverse cancerous and noncancerous cell types, secretory proteins, growth factors, and miRNAs. Complex interactions within the TME can promote cancer progression and metastasis via multiple mechanisms, including oxidative stress, hypoxia, angiogenesis, lymphangiogenesis, and cancer stem cell regulation. Here, we decipher the mechanisms of miRNA regulating the TME, intending to use that knowledge to identify miRNAs as therapeutic targets in breast cancer and use miRNAs as blood-based biomarkers. © Springer Nature Singapore Pte Ltd. 2022.

3.
Drugs of the Future ; 47(11):833-835, 2022.
Статья в английский | EMBASE | ID: covidwho-2227236

Реферат

The 32nd European Respiratory Society (ERS) International Congress was held again in person at the FIRA Barcelona Gran Via Conference Center in Spain, as well as online. On-site attendance was limited to 10,000 delegates, with the spaces selling out before the conference began. The program included live streamed presentations, thematic poster discussion sessions, oral presentations, mini-symposia, industry exhibitors and skills workshops to discuss major respiratory fields that included thoracic oncology, respiratory infections, interstitial lung diseases, respiratory critical care, sleep and breathing disorders and pulmonary vascular diseases. This report will cover some of the most interesting presentations related to respiratory disease treatment. Copyright © 2022 Clarivate.

5.
Viruses ; 14(8)2022 07 30.
Статья в английский | MEDLINE | ID: covidwho-2024271

Реферат

Mesenchymal stem cells (MSCs) have excellent anti-inflammatory and immunomodulatory capabilities and therapeutic effects in some viral diseases. The therapeutic impact of MSCs mainly relies on the paracrine effects of various secreted substances. Feline calicivirus (FCV) and feline herpesvirus type 1 (FHV1) are common and highly prevalent pathogens causing upper respiratory diseases, and FCV is associated with gingivostomatitis in cats. Recently, feline MSC treatment has been reported to improve the clinical symptoms of feline chronic gingivostomatitis, but the antiviral effects of feline MSCs on FCV and FHV1 are not known. In this study, we evaluated the antiviral efficacy of using feline MSC secretome as a conditioned medium on FCV and FHV1 viral replication in Crandell-Reese feline kidney (CRFK) cells, and RNA sequencing was used to analyze how the CRFK cells were altered by the MSC secretomes. The feline MSC secretome did not inhibit FCV or FHV1 viral entry into the CRFK cells but had antiviral effects on the replication of both FCV and FHV1 in a dose-dependent manner.


Тема - темы
Caliciviridae Infections , Calicivirus, Feline , Cat Diseases , Mesenchymal Stem Cells , Animals , Antiviral Agents/pharmacology , Cat Diseases/therapy , Cats , Secretome , Varicellovirus
6.
Cytotherapy ; 24(5):S94, 2022.
Статья в английский | EMBASE | ID: covidwho-1996719

Реферат

Background & Aim: COVID-19 suggested to be treated with pleiotropic agents rather than single-target agents due to its complicated pathophysiology. There are currently no approved effective therapy that can stop the progression of COVID-19. Mesenchymal stem cells and its secretome have been studied in several in vivo lung disease models. The therapeutic application of Secretome therapy has been shown to be efficient in influenza infection, resulting in decreased alveolar fluid clearance and lung injury. This has been linked to attenuation of pro-inflammatory cytokine release, inflammatory cell recruitment, and increased alveolar macrophage content. In this article, we report case series of three COVID-19 patients received an experimental treatment with secretome from umbilical cord-derived mesenchymal stem cells (UC-MSCs) therapy in conjunction with recommended treatment protocols. Methods, Results & Conclusion: Three male patients who were tested positive for COVID-19 are initially presented with mild case of COVID-19 symptoms. The patients were treated with recommended treatment protocols of COVID-19 and add-on secretome from umbilical cord-derived mesenchymal stem cells (UC-MSCs) therapy. In this cases we report the administration of 1 cc and 0,5 cc secretome from UC-MSCs through nasal drop, with 0,5 cc and 0,25 cc for each nostril. Ground Glass Opacity (GGO) were checked by chest CT and the observation stop when patients were symptom-free and tested negative for (Figure Presented)Figs 1 and 2 COVID-19. Significant improvement showed in patients’s respiratory symptoms include GGO profiles, proven by chest CT and no side effects reported. Our report showed that nasal drop of secretome from UC-MSC therapy in patients with mild COVID-19 is safe and well tolerated. No serious therapy-associated adverse event was observed. Further study with more patients and comprehensive biomarker testing is needed to evaluate the efficacy of secretome from UC-MSC therapy to improve long-term treatment outcomes in COVID-19 patients

7.
Cells ; 11(15)2022 07 27.
Статья в английский | MEDLINE | ID: covidwho-1969102

Реферат

Since it was first reported, the novel coronavirus disease 2019 (COVID-19) remains an unresolved puzzle for biomedical researchers in different fields. Various treatments, drugs, and interventions were explored as treatments for COVID. Nevertheless, there are no standard and effective therapeutic measures. Meanwhile, mesenchymal stem cell (MSC) therapy offers a new approach with minimal side effects. MSCs and MSC-based products possess several biological properties that potentially alleviate COVID-19 symptoms. Generally, there are three classifications of stem cell therapy: cell-based therapy, tissue engineering, and cell-free therapy. This review discusses the MSC-based and cell-free therapies for patients with COVID-19, their potential mechanisms of action, and clinical trials related to these therapies. Cell-based therapies involve the direct use and injection of MSCs into the target tissue or organ. On the other hand, cell-free therapy uses secreted products from cells as the primary material. Cell-free therapy materials can comprise cell secretomes and extracellular vesicles. Each therapeutic approach possesses different benefits and various risks. A better understanding of MSC-based and cell-free therapies is essential for supporting the development of safe and effective COVID-19 therapy.


Тема - темы
COVID-19 , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , COVID-19/therapy , Cell- and Tissue-Based Therapy , Humans , Mesenchymal Stem Cell Transplantation/adverse effects , SARS-CoV-2
8.
Biocell ; 46(10):2201-2208, 2022.
Статья в английский | Web of Science | ID: covidwho-1918326

Реферат

Mesenchymal stem cells (MSCs) are multipotent cells usually isolated from bone marrow, endometrium, adipose tissues, skin, and dental pulp. MSCs played a crucial role in regenerative therapy and have been introduced as an interdisciplinary field between cell biology and material science. Recently, MSCs have been widely explored for their application in regenerative medicine and COVID-19 treatment. Different approaches to evaluate the future of biomaterials and stem cell properties have been developed. However, misconceptions and ethical issues still exist, such as MSCs being non-angiogenic, anti-apoptotic, and immunoregulatory competencies. Embryonic stem cells isolation primarily requires the consent of donors and can include the killing of fertilized eggs. These issues generate questions related to ethical and moral issues. However, MSCs have gained considerable attention for tissue regeneration owing to their differentiation ability with immunomodulatory effects. They are capable of secreting a broad range of biomolecules such as proteins, nucleic acids, exosomes, microRNAs, and membrane vesicles, collectively known as secretomes. Secretomes are released in response to the surrounding microenvironment. In this article, we briefly address topics related to the therapeutic potential of MSCs as an advanced approach in the field of regenerative medicine and various perspectives.

9.
Cytokine Growth Factor Rev ; 68: 25-36, 2022 Dec.
Статья в английский | MEDLINE | ID: covidwho-1914293

Реферат

Considering the high impact that severe Coronavirus disease 2019 (COVID-19) cases still pose on public health and their complex pharmacological management, the search for new therapeutic alternatives is essential. Mesenchymal stromal cells (MSCs) could be promising candidates as they present important immunomodulatory and anti-inflammatory properties that can combat the acute severe respiratory distress syndrome (ARDS) and the cytokine storm occurring in COVID-19, two processes that are mainly driven by an immunological misbalance. In this review, we provide a comprehensive overview of the intricate inflammatory process derived from the immune dysregulation that occurs in COVID-19, discussing the potential that the cytokines and growth factors that constitute the MSC-derived secretome present to treat the disease. Moreover, we revise the latest clinical progress made in the field, discussing the most important findings of the clinical trials conducted to date, which follow 2 different approaches: MSC-based cell therapy or the administration of the secretome by itself, as a cell-free therapy.


Тема - темы
COVID-19 , Mesenchymal Stem Cell Transplantation , Respiratory Distress Syndrome , Humans , COVID-19/therapy , SARS-CoV-2 , Respiratory Distress Syndrome/therapy , Cytokine Release Syndrome
10.
Biomedicines ; 10(6)2022 Jun 15.
Статья в английский | MEDLINE | ID: covidwho-1911179

Реферат

In the lungs, fibrosis is a growing clinical problem that results in shortness of breath and can end up in respiratory failure. Even though the main fibrotic disease affecting the lung is idiopathic pulmonary fibrosis (IPF), which affects the interstitial space, there are many fibrotic events that have high and dangerous consequences for the lungs. Asthma, chronic obstructive pulmonary disease (COPD), excessive allergies, clearance of infection or COVID-19, all are frequent diseases that show lung fibrosis. In this review, we describe the different kinds of fibrosis and analyse the main types of cells involved-myofibroblasts and other cells, like macrophages-and review the main fibrotic mechanisms. Finally, we analyse present treatments for fibrosis in the lungs and highlight potential targets for anti-fibrotic therapies.

11.
Biomedicines ; 10(5)2022 May 08.
Статья в английский | MEDLINE | ID: covidwho-1875476

Реферат

Our research group has been developing a series of biological drugs produced by coculture techniques with M2-polarized macrophages with different primary tissue cells and/or mesenchymal stromal cells (MSC), generally from fat, to produce anti-inflammatory and anti-fibrotic effects, avoiding the overexpression of pro-inflammatory cytokines by the innate immune system at a given time. One of these products is the drug PRS CK STORM, a medium conditioned by allogenic M2-polarized macrophages, from coculture, with those macrophages M2 with MSC from fat, whose composition, in vitro safety, and efficacy we studied. In the present work, we publish the results obtained in terms of safety (pharmacodynamics and pharmacokinetics) and efficacy of the intravenous application of this biological drug in a murine model of cytokine storm associated with severe infectious processes, including those associated with COVID-19. The results demonstrate the safety and high efficacy of PRS CK STORM as an intravenous drug to prevent and treat the cytokine storm associated with infectious processes, including COVID-19.

12.
Pharmaceutics ; 14(5):1112, 2022.
Статья в английский | ProQuest Central | ID: covidwho-1871481

Реферат

Beneficial properties of mesenchymal stromal cells (MSCs) have prompted their use in preclinical and clinical research. Accumulating evidence has been provided for the therapeutic effects of MSCs in several pathologies, including neurodegenerative diseases, myocardial infarction, skin problems, liver disorders and cancer, among others. Although MSCs are found in multiple tissues, the number of MSCs is low, making in vitro expansion a required step before MSC application. However, culture-expanded MSCs exhibit notable differences in terms of cell morphology, physiology and function, which decisively contribute to MSC heterogeneity. The changes induced in MSCs during in vitro expansion may account for the variability in the results obtained in different MSC-based therapy studies, including those using MSCs as living drug delivery systems. This review dissects the different changes that occur in culture-expanded MSCs and how these modifications alter their therapeutic properties after transplantation. Furthermore, we discuss the current strategies developed to improve the beneficial effects of MSCs for successful clinical implementation, as well as potential therapeutic alternatives.

13.
Cells ; 11(9)2022 04 21.
Статья в английский | MEDLINE | ID: covidwho-1818055

Реферат

Human SARS-CoV-2 and avian infectious bronchitis virus (IBV) are highly contagious and deadly coronaviruses, causing devastating respiratory diseases in humans and chickens. The lack of effective therapeutics exacerbates the impact of outbreaks associated with SARS-CoV-2 and IBV infections. Thus, novel drugs or therapeutic agents are highly in demand for controlling viral transmission and disease progression. Mesenchymal stem cells (MSC) secreted factors (secretome) are safe and efficient alternatives to stem cells in MSC-based therapies. This study aimed to investigate the antiviral potentials of human Wharton's jelly MSC secretome (hWJ-MSC-S) against SARS-CoV-2 and IBV infections in vitro and in ovo. The half-maximal inhibitory concentrations (IC50), cytotoxic concentration (CC50), and selective index (SI) values of hWJ-MSC-S were determined using Vero-E6 cells. The virucidal, anti-adsorption, and anti-replication antiviral mechanisms of hWJ-MSC-S were evaluated. The hWJ-MSC-S significantly inhibited infection of SARS-CoV-2 and IBV, without affecting the viability of cells and embryos. Interestingly, hWJ-MSC-S reduced viral infection by >90%, in vitro. The IC50 and SI of hWJ-MSC secretome against SARS-CoV-2 were 166.6 and 235.29 µg/mL, respectively, while for IBV, IC50 and SI were 439.9 and 89.11 µg/mL, respectively. The virucidal and anti-replication antiviral effects of hWJ-MSC-S were very prominent compared to the anti-adsorption effect. In the in ovo model, hWJ-MSC-S reduced IBV titer by >99%. Liquid chromatography-tandem mass spectrometry (LC/MS-MS) analysis of hWJ-MSC-S revealed a significant enrichment of immunomodulatory and antiviral proteins. Collectively, our results not only uncovered the antiviral potency of hWJ-MSC-S against SARS-CoV-2 and IBV, but also described the mechanism by which hWJ-MSC-S inhibits viral infection. These findings indicate that hWJ-MSC-S could be utilized in future pre-clinical and clinical studies to develop effective therapeutic approaches against human COVID-19 and avian IB respiratory diseases.


Тема - темы
Bronchitis , COVID-19 , Mesenchymal Stem Cells , Wharton Jelly , Animals , Antiviral Agents/metabolism , Antiviral Agents/pharmacology , Bronchitis/metabolism , Chickens , Humans , Immunologic Factors/metabolism , Mesenchymal Stem Cells/metabolism , SARS-CoV-2 , Secretome , Wharton Jelly/metabolism
14.
Biomolecules ; 12(4)2022 03 31.
Статья в английский | MEDLINE | ID: covidwho-1776123

Реферат

Intercellular communication between monocytes/macrophages and cells involved in tissue regeneration, such as mesenchymal stromal cells (MSCs) and primary tissue cells, is essential for tissue regeneration and recovery of homeostasis. Typically, in the final phase of the inflammation-resolving process, this intercellular communication drives an anti-inflammatory immunomodulatory response. To obtain a safe and effective treatment to counteract the cytokine storm associated with a disproportionate immune response to severe infections, including that associated with COVID-19, by means of naturally balanced immunomodulation, our group has standardized the production under GMP-like conditions of a secretome by coculture of macrophages and MSCs. To characterize this proteome, we determined the expression of molecules related to cellular immune response and tissue regeneration, as well as its possible toxicity and anti-inflammatory potency. The results show a specific molecular pattern of interaction between the two cell types studied, with an anti-inflammatory and regenerative profile. In addition, the secretome is not toxic by itself on human PBMC or on THP-1 monocytes and prevents lipopolysaccharide (LPS)-induced growth effects on those cell types. Finally, PRS CK STORM prevents LPS-induced TNF-A and IL-1Β secretion from PBMC and from THP-1 cells at the same level as hydrocortisone, demonstrating its anti-inflammatory potency.


Тема - темы
COVID-19 , Mesenchymal Stem Cells , Anti-Inflammatory Agents/metabolism , Anti-Inflammatory Agents/pharmacology , Coculture Techniques , Culture Media, Conditioned/pharmacology , Humans , Leukocytes, Mononuclear , Lipopolysaccharides/pharmacology , Monocytes
15.
Stem Cell Res Ther ; 13(1): 96, 2022 03 07.
Статья в английский | MEDLINE | ID: covidwho-1731542

Реферат

BACKGROUND: Cell-free Mesenchymal stromal cells (MSCs) have been considered due to their capacity to modulate the immune system and suppress cytokine storms caused by SARS-CoV-2. This prospective randomized double-blind placebo-controlled clinical trial aimed to assess the safety and efficacy of secretome derived from allogeneic menstrual blood stromal cells (MenSCs) as a treatment in patients with severe COVID-19. METHODS: Patients with severe COVID-19 were randomized (1:1) to either MenSC-derived secretome treatment or the control group. Subjects received five intravenous infusions of 5 mL secretome or the same volume of placebo for five days and were monitored for safety and efficacy for 28 days after treatment. Adverse events, laboratory parameters, duration of hospitalization, clinical symptom improvement, dynamic of O2 saturation, lymphocyte number, and serial chest imaging were analyzed. RESULTS: All safety endpoints were observed without adverse events after 72 h of secretome injection. Within 28 days after enrollment, 7 patients (50%) were intubated in the treated group versus 12 patients (80%) in the control group. Overall, 64% of patients had improved oxygen levels within 5 days of starting treatment (P < 0.0001) and there was a survival rate of 57% in the treatment group compared to 28% in the control group was (P < 0.0001). Laboratory values revealed that significant acute phase reactants declined, with mean C-reactive protein, ferritin, and D-dimer reduction of 77% (P < 0.001), 43% (P < 0.001), and 42% (P < 0.05), respectively. Significant improvement in lymphopenia was associated with an increase in mean CD4+ and CD8+ lymphocyte counts of 20% (P = 0.06) and 15% (P < 0.05), respectively. Following treatment, percentage of pulmonary involvement showed a significant improvement in the secretome group (P < 0.0001). This improvement differed significantly between survivors and those who were dying (P < 0.005). CONCLUSIONS: For the first time, this study demonstrated that in hospitalized patients with severe COVID-19, therapy with MenSCs-derived secretome leads to reversal of hypoxia, immune reconstitution, and downregulation of cytokine storm, with no adverse effects attributable to the treatment. Given these outcomes, it may be possible to use this type of treatment for serious inflammatory lung disease with a mechanism similar to COVID-19 in the future. However, it is necessary to evaluate the safety and efficacy of MenSCs-derived secretome therapy in clinical trials on a larger population of patients. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT05019287. Registered 24AGUEST 2021, retrospectively registered, https://clinicaltrials.gov/ct2/show/record/NCT05019287 . IRCT, IRCT20180619040147N6. Registered 04/01/2021.


Тема - темы
COVID-19 , Hematopoietic Stem Cell Transplantation , Mesenchymal Stem Cells , COVID-19/therapy , Double-Blind Method , Humans , Prospective Studies , SARS-CoV-2 , Secretome , Treatment Outcome
16.
Cell ; 185(5): 881-895.e20, 2022 03 03.
Статья в английский | MEDLINE | ID: covidwho-1649960

Реферат

Post-acute sequelae of COVID-19 (PASC) represent an emerging global crisis. However, quantifiable risk factors for PASC and their biological associations are poorly resolved. We executed a deep multi-omic, longitudinal investigation of 309 COVID-19 patients from initial diagnosis to convalescence (2-3 months later), integrated with clinical data and patient-reported symptoms. We resolved four PASC-anticipating risk factors at the time of initial COVID-19 diagnosis: type 2 diabetes, SARS-CoV-2 RNAemia, Epstein-Barr virus viremia, and specific auto-antibodies. In patients with gastrointestinal PASC, SARS-CoV-2-specific and CMV-specific CD8+ T cells exhibited unique dynamics during recovery from COVID-19. Analysis of symptom-associated immunological signatures revealed coordinated immunity polarization into four endotypes, exhibiting divergent acute severity and PASC. We find that immunological associations between PASC factors diminish over time, leading to distinct convalescent immune states. Detectability of most PASC factors at COVID-19 diagnosis emphasizes the importance of early disease measurements for understanding emergent chronic conditions and suggests PASC treatment strategies.


Тема - темы
COVID-19/complications , COVID-19/diagnosis , Convalescence , Adaptive Immunity/genetics , Adolescent , Adult , Aged , Aged, 80 and over , Autoantibodies/blood , Biomarkers/metabolism , Blood Proteins/metabolism , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , COVID-19/immunology , COVID-19/pathology , COVID-19/virology , Disease Progression , Female , Humans , Immunity, Innate/genetics , Longitudinal Studies , Male , Middle Aged , Risk Factors , SARS-CoV-2/isolation & purification , Transcriptome , Young Adult , Post-Acute COVID-19 Syndrome
17.
World J Stem Cells ; 13(12): 1813-1825, 2021 Dec 26.
Статья в английский | MEDLINE | ID: covidwho-1626293

Реферат

Despite various treatment protocols and newly recognized therapeutics, there are no effective treatment approaches against coronavirus disease. New therapeutic strategies including the use of stem cells-derived secretome as a cell-free therapy have been recommended for patients with critical illness. The pro-regenerative, pro-angiogenic, anti-inflammatory, anti-apoptotic, immunomodulatory, and trophic properties of stem cells-derived secretome, extracellular vesicles (EVs), and bioactive factors have made them suitable candidates for respiratory tract regeneration in coronavirus disease 2019 (COVID-19) patients. EVs including microvesicles and exosomes can be applied for communication at the intercellular level due to their abilities in the long-distance transfer of biological messages such as mRNAs, growth factors, transcription factors, microRNAs, and cytokines, and therefore, simulate the specifications of the parent cell, influencing target cells upon internalization and/or binding. EVs exhibit both anti-inflammatory and tolerogenic immune responses by regulation of proliferation, polarization, activation, and migration of different immune cells. Due to effective immunomodulatory and high safety including a minimum risk of immunogenicity and tumorigenicity, mesenchymal stem cell (MSC)-EVs are more preferable to MSC-based therapies. Thus, as an endogenous repair and inflammation-reducing agent, MSC-EVs could be used against COVID-19 induced morbidity and mortality after further mechanistic and preclinical/clinical investigations. This review is focused on the therapeutic perspective of the secretome of stem cells in alleviating the cytokine storm and organ injury in COVID-19 patients.

18.
Biocell ; 46(4):913-922, 2022.
Статья в английский | ProQuest Central | ID: covidwho-1598662

Реферат

Mesenchymal stem cells (MSCs) play key roles in regenerative medicine by promoting tissue healing. MSCs can be isolated from different adult tissues and they are able to differentiate into several lineages. Due to their anti-inflammatory, angiogenic and immune-modulatory properties, MSCs are suitable for tissue engineering applications and, when associated with biomaterials, their benefits can be improved. Moreover, recently, MSCs have been studied for new clinical applications, such as in the treatment of patients with COVID-19. MSCs regenerative potential has been attributed to their secretome, which comprises extracellular matrix, soluble proteins and several elements, including the release of extracellular vesicles. Even though, in order to explore all their therapeutic potential, it is still necessary to advance in the investigation of their basic cell biology characteristics.

19.
Pharmaceutics ; 13(11)2021 Oct 27.
Статья в английский | MEDLINE | ID: covidwho-1518625

Реферат

Considering the high prevalence and the complex pharmacological management of immune-mediated inflammatory diseases (IMIDs), the search for new therapeutic approaches for their treatment is vital. Although the immunomodulatory and anti-inflammatory effects of mesenchymal stromal cells (MSCs) have been extensively studied as a potential therapy in this field, direct MSC implantation presents some limitations that could slow down the clinical translation. Since the beneficial effects of MSCs have been mainly attributed to their ability to secrete a plethora of bioactive factors, their secretome has been proposed as a new and promising pathway for the treatment of IMIDs. Formed from soluble factors and extracellular vesicles (EVs), the MSC-derived secretome has been proven to elicit immunomodulatory effects that control the inflammatory processes that occur in IMIDs. This article aims to review the available knowledge on the MSC secretome, evaluating the advances in this field in terms of its composition, production and application, as well as analyzing the pending challenges in the field. Moreover, the latest research involving secretome administration in IMIDs is discussed to provide an updated state-of-the-art for this field. Finally, novel secretome delivery alternatives are reviewed, paying special attention to hydrogel encapsulation as one of the most convenient and promising strategies.

20.
Biomolecules ; 10(10)2020 09 27.
Статья в английский | MEDLINE | ID: covidwho-1295752

Реферат

Acute and chronic skin wounds due to burns, pressure injuries, and trauma represent a substantial challenge to healthcare delivery with particular impacts on geriatric, paraplegic, and quadriplegic demographics worldwide. Nevertheless, the current standard of care relies extensively on preventive measures to mitigate pressure injury, surgical debridement, skin flap procedures, and negative pressure wound vacuum measures. This article highlights the potential of adipose-, blood-, and cellulose-derived products (cells, decellularized matrices and scaffolds, and exosome and secretome factors) as a means to address this unmet medical need. The current status of this research area is evaluated and discussed in the context of promising avenues for future discovery.


Тема - темы
Burns/therapy , Exosomes/transplantation , Hydrogels/therapeutic use , Wound Healing/genetics , Burns/pathology , Cell- and Tissue-Based Therapy/trends , Cellulose/therapeutic use , Exosomes/genetics , Humans , Hydrogels/chemistry , Mesenchymal Stem Cell Transplantation/trends , Mesenchymal Stem Cells/cytology , Skin/growth & development , Skin/injuries , Skin/metabolism
Критерии поиска